	LESSO	N PLAN OF 4 th SEMESTER CIVIL ENGINEERING
Discipline :- CIVIL	Semester:-	Name of the Teaching Faculty:- SWAYAN RANJAN MISRA
Subject:-	No of	Semester From:- 04.02.2025 To:- 17.05.2025
Hydraulics	Days/per	
&	Week Class	No of Weeks:- 16
Irrigation	Allotted :-	
Engg.	03	
Week	Class Day	Theory Topics
1st	1 st	HYDROSTATICS
		Properties of fluid
		density, specific gravity, surface tension,
	2 nd	capillarity, viscosity and their uses
	3 rd	Pressure and its measurements:
		intensity of pressure, atmospheric pressure, gauge pressure, absolute pressure
2 1	a st	and vacuum pressure
2nd	1 st	Relationship between atmospheric pressure absolute pressure and gauge pressure
	2 nd	Pressure head; pressure gauges.
	3 rd	Pressure exerted on an immersed surface:
		Total pressure
3rd	1 st	Resultant pressure,
	2 nd	Expression for total pressure exerted on horizontal
	3 rd	Example and Numerical Problem
4th	1 st	Expression for total pressure vertical surface
	2 nd	Example and Numerical Problem
	3 rd	KINEMATICS OF FLUID FLOW:
		Basic equation of fluid flow and their application
		Rate of discharge,
	1 st	equation of continuity of liquid Total energy of a liquid in motion, potential
5th	1"	Total energy of a liquid in motion- potential, Kinetic & pressure
	and	Bernoulli's theorem and its limitations
	3 rd	Practical applications of
	3	Bernoulli's equation
6th	1 st	Flow over Notches and Weirs
0.11		Notches, Weirs, types of notches and weirs
	2 nd	Discharge through different types of notches and weirs-their application
	3 rd	Types of flow through the pipes
		uniform and non uniform
7th	1 st	laminar and turbulent
	2 nd	steady and unsteady
	3 rd	Reynolds's number and its application
8th	1 st	Losses of head of a liquid flowing through pipes
		Different types of major and minor losses
	2 nd	Simple numerical problems on losses due to friction using Darcy's equation

1	3 rd	Total energy lines & hydraulic gradient lines
9th	1 st	Types of channel sections-rectangular, trapezoidal and circular section
	2 nd	Simple Numerical
	3 rd	discharge formulae- Chezy's and Manning's equation
Oth	1 st	Best economical section.
	2 nd	Simple Numerical
	3 rd	PUMPS:
		Type of pumps
.1th	1 st	Centrifugal pump: basic principles, operation, discharge.
	2 nd	horse power & efficiency. Of Centrifugal pump
	3 rd	Reciprocating pumps: types, operation, discharge
2th	1 st	horse power & efficiency of Reciprocating pump
	2 nd	Hydrology
		Hydrology Cycle
	3 rd	Rainfall: types, intensity, hyetograph
	1 st	Estimation of rainfall, rain gauges, Its types
13th	2 nd	Concept of catchment area, types, run-off, estimation of flood discharge by
		Dicken's and Ryve's formulae
	3 rd	Water Requirement of Crops
1.4.1	- st	Definition of irrigation, necessity, benefits of irrigation, types of irrigation
14th	1 st	Types of irrigation Crop season
	2 nd	Duty, Delta and base period their relationship, overlap allowance,
	3 rd	Kharif and rabi crops, Gross command area, culturable command area
15th	1 st	Intensity of Irrigation,irrigable area, time factor, crop ratio
	2 nd	WATER LOGGING AND DRAINAGE
		Causes and effects of water logging
	3 rd	detection, prevention and remedies
	19.00 - 195	DOUBT CLEARING CLASS AND REVISION & PREVIOUS FIVE YEARS QUESTION
		ANSWER DISCUSSION

Signature of lecturer

Signature of H.O.D

DISCIPLINE :-		PLAN OF 4 th SEMESTER CIVIL ENGINEERING NAME OF THE TEACHING FACULTY:- MISS JYOTIRMAYEE SABAR, SENIOR LECTURER
CIVIL ENGG.	SEMESTER: -4 th	NAME OF THE TEACHING FACULTY:- WIISS JTOTIKIVIATEE SABAR, SERIOR ELECTORES
SUBJECT:-	No of	SEMESTER FROM:- 04.02.2025 TO 17.05.2025 SUMMER 2025
LAND SURVEY-I	Days/per	
	Week Class	NO OF WEEKS:- 15
	Allotted :-	
	05	
Week	Class Day	Theory Topics
	1 st	1.Introduction to Surveying ,Linear measurements:-Definitions,Aim and objectives.
. st	2 nd	Principles of Survey.
1 st	3 rd	Precisions and accuracy of measurements.
	4 th	Types of tapes and chains.
	5 th	Errors and mistakes in linear measurements.
	1 st	Corrections to measured due to incorrect length, sag, pull, temp. variation.
	2 nd	Numerical problems.
2 nd	3 rd	2.Chaining and Chain Surveying:- Equipment accessories for chaining.
	4 th	Ranging- ,Line ranger, Errors due to incorrect ranging.
	5 th	Methods of chaining, Clinometer
	1 st	Setting perpendiculars with chain &tape, Chaining across different obstacles.
	2 nd	Purpose of chain surveying, Concept of field book.
3 rd	3 rd	Offsets, Instruments for setting offsets.
	4 th	Errors in chain surveying.
	5 th	3.Angular measurement and compass surveying:- Measurement of angle with chain,
		tape and compass.
	1 st	Compass-Types, features
th	2 nd	Compass-Merits, Demerits, Testing and adjustment of compass.
4 th	3 rd	Designation of angles, concept of bearing
	4 th	Numerical problems on bearings
	5 th	Use of compass,FB,BB,Numerical problems
	1 st	Effects of earth magnetism, numericals problems on declination
_ th	2 nd	Errors in angle measurement with compass
5 th	3 rd	Principals of traversing
	4 th	Local attractions-causes ,detections & corrections and numericals.
	1 st	Errors in compass surveying
	2 nd	Plotting of traversing 4.Map reading cadastrin maps and nomenclature:-study of direction, scale grid
-th		
6 th	3 rd	study of signs and symbols
		Cadastral map preparations
	5 th	Unique identification of number of parcel
	2 nd	Control points and its types
7 th	-	Adjacent boundaries and features Tapalagy greations and verification
7	3 rd	Topology creations and verification Findame table surveying: Objectives principles and use
	4 th	5.plane table surveying:-Objectives, principles and use
	5 th	Instruments and accessories
8 th	1"	Methods-Radiations, intersection

	3 rd	Three point problem
	5 th	Three point problem
	1 st	Errors in plane table surveying
		6:-Theodolite surveying and traversing:-Purpose and definition
oth	2 nd	Transit theodolite -Features, parts
9 th	3 rd	Fundamental axes of theodolite,t emporary adjustment
	4 th	Concept of transiting, measurement of horizontal and vertical angle
	5 th	Measurement of magnetic bearings, deflection angles
	1 st	Setting out angles
	2 nd	Errors in theodolite
10 th	3 rd	Methods of theodolite traversing
	4 th	Checks for open and closed traverse
	5th	Travers computation
	1 st	Numerical problems
	2 nd	Closing errors
11 th	3 rd	Adjustment bearings and numerical problems
	4 th	Balancing of traverse
	5 th	Calculation of areas
	1 st	7. Levelling and contouring:-Definition purpose and types
	2 nd	Essential features and use of different leveling instruments ,concept of different axis
12 th	3 rd	Leveling staff-types, features and use, temporary and permanent adjustment of leve
	4 th	Concept of BS,IS,FS,CP,HI,Principle of leveling
	5 th	Field data entry, HI and Rise and fall method, numerical problems
	1 st	Different types of leveling, uses and methods, plotting of profiles
	2 nd	Curvature and refraction, reciprocal leveling
13 th	3 rd	Difficulties in leveling, errors, sensitiveness of bubble tube, setting grades and stakes
	4 th	CONTOURING-Definitions, concept and characteristics
	5 th	Methods of contouring
	1 st	Plotting contour maps
	2 nd	Interpolation of contour maps
14 th	3 rd	Use of contour maps
	4 th	Computation of volume from contour map
	5 th	Interpret physical land form, problem solving and decision making
	1 st	8.Computation of area and volume:-Area from plans
	2 nd	Ordinate rule, trapezoidal rule, numerical problems
15 th	3 rd	Simpson's rule and numerical
	4 th	Calculation of volume by different methods, Numerical problems
	5 th	REVISION, PREVIOUS YEAR QUESTION ANSWER DISCUSSION

Signature of Paculty

Signature of HOD

DISCIPLINE :-	SEMESTER:	NAME OF THE TEACHING FACULTY:- MISS JYOTIRMAYEE SABAR, SENIOR LECTUR
CIVIL ENGG.	-4 th	IVAIVIE OF THE TEACHING PACOETT." IVIISS TOTIKIVIATEE SADAK, SEIVION EECTOR
SUBJECT:-	No of	SEMESTER FROM:- 04.02.2025 TO 17.05.2025 SUMMER 2025
HIGHWAY	Days/per	
ENGINEERING	Week Class	NO OF WEEKS:- 15
	Allotted :-	
	03	
Week	Class Day	Theory Topics
	1 st	INTRODUCTION: Importance of highway transportation: importance organizations
1 st		like indian roads congress, miinistry of surface transport
	2 nd	central road research institute
	3 rd	Function of indian roads congress
	1 st	IRC classification of roads
2 nd	2 nd	Organisation of state highway department.
	3 rd	Glossary of terms used in geometric and their
	1 st	right of way , formation width
3 rd	2 nd	road margin
	3 rd	
	1 st	road shoulders
4 th	2 nd	carriage way
	3 rd	side slopes
	1 st	kerbs
5 th	2 nd	formation level
	3 rd	camber
	1 st	gradients
6 th	2 nd	stopping and passing sight distance
	3 rd	Nessesity of curves
	1 st	horizontal and vertical curve
7 th	2 nd	super elevation
	3 rd	super elevation
	1 st	methods of providing super elevation
8 th	2 nd	methods of providing super elevation
	3 rd	methods of providing super elevation
	1 st	ROAD MATERIALS: Different type of road materials in use: soil, aggregate and binders
9 th	2 nd	Function of the soil , as highway subgrade
	3 rd	Function of the soil , as highway subgrade
	1 st	California bearing ratio :method of finding CBR valued in the labrotories and a site
10 th	2 nd	and their significance
	3 rd	Testing aggregates: Abration test , crushing test
	1 st	water absorption test
11 th	2 nd	soundness test
	3 rd	soundness test
		ROAD PAVEMENTS: Flexible and rigid pavments, their merits and demarits
12 th	2 nd	typical cross sections ,functions of varies components, flexible payments
	3 rd	sub grade preparations : setting out alinments of road , setting out bench mark ,

		control page for embakment and cutting , borrow pit, making profil of embakment
th	1 st	construction of embakment, compaction, stabilization, preparation of sub grade, method of checking chamber, gradient and alignment as per recomandations
13 th	2 nd	equipment used for subgrade preparation.
	3 rd	sub base course : stabilization sub base course , purpose of stabilization,
	1 st	mechanical stabilization ,lime stabilization
14 th	2 nd	cenment stabilization ,fly ash stabilization
	3 rd	surfacing : surface dressing : premix carpet , semi dence carpet
15 th	1 st	bituminous concrete grouting
	2 nd	base course: preparetion of base course, brick soiling, stone soling, metalling, wate bound macadam and wet mix macadam, bitumineous construction: different types.
	3 rd	REVISION, PREVIOUS YEAR QUESTION ANSWER DISCUSSION

Signature of Faculty

Signature of HOD

Discipline:CIVIL	Semester: 4th	Name of Teaching Faculty:-T CHINMAYEE SUNANI	
		Semester from date: 04.02.2025 to 17.05.2025 No of Weeks: 15	
Neek	Claas Day	Theory Topics	
lst	1st	base course : preparetion of base course , brick soiling ,stone soling	
	2nd	rigid pavement : concept of concrete roads as per IRC specifiacations.	
2nd	1st	HILL ROADS: intoduction: typical cross section showing all details of a	
	2nd	partly in cutting , partly in filling	
3rd	1st	Breast wall , retaining wall	
	2nd	different types of bends	
4th	1st	ROAD DRAINAGE :Necessity of road drainage work ,cross drainagr work.	
	2nd	surface and sub surface drain and stoms water drains ,location ,spacing	
5th	1st	intercepting drains	
	2nd	pipe drains in hill roads	
6t	1st	details of drains in cutting embankment	
	2nd	typical cross section	
7th	1st	typical cross section of road drains	
	2nd	ROAD MAINTENANCE: Common type of road failures -their cause and	
8th	1st	Maintenance of bituminous road such as patch work and resurfacing	
	2nd	maintenance of concrete roads - filling cracks	
9th	1st	repairing joints, maintenance of shoulders (berm)	
	2nd	maintenance of traffic control devices	
10th	1st	basic concept of traffic study,	
	2nd	traffic sefty and trafic control signals	
11th	1st	CONSTRUCTION EQUIPMENT: Preliminary ideas of the following plant	
	2nd	asphalt mixer	
12th	1st	tar boiler	
	2nd	road paver	
13th	1st	morden road constuction equipment for roads	
	2nd	morden road constuction equipment for roads	
14th	1st	morden road constuction equipment for roads	
	2nd	hot mixer	
15th	1st	modern road constuction equipment for roads.	
	2nd	modern road constuction equipment for roads.	

Quari

200000 25

Discipline :- CIVIL	Semester:-	Name of the Teaching Faculty:- Mr.SWAYAN RANJAN MISRA
CIVIL	4	
Subject:-	No of	Semester From:- 4 th Feb, 2025 To:- 17 th May, 2025
Structural	Days/per	
Design-1	Week Class	No of Weeks:- 15
	Allotted :-	
	05	
Week	Class Day	Theory Topics
1 st	1 st	1.1 Working stress method (WSM)
		1.2 Objectives of design and detailing.
	2 nd	State the different methods of design of concrete structures.
	3 rd	1.2Introduction to reinforced concrete, R.C. sections their behavior, grades of
		concrete
	4 th	and steel Permissible stresses, assumption in WSM & LSM
	5 th	1.3Basic concept of under reinforced, over reinforced and balanced section
2 nd	1 st	1.4flexural design & analysis of singly and doubly reinforced rectangular
		sections.(WSM)
	2 nd	Numerical problems on Balanced section
	3 rd	Numerical problems on Balanced section
	4 th	Numerical problems on under reinforced section
	5 th	Numerical problems on under reinforced section
3 rd	1 st	Numerical problems on over reinforced section
	2 nd	2.1 Limit state method (LSM) Introduction
	3 rd	2.1Definition, types of limit states, partial safety factors for materials strength.
	4 th	Characteristic load, design load, loading on structure
		2.2 I.S specification regarding spacing of reinforcement in slab,
	5 th	Cover to reinforcement in slab Beam column & footing, minimum reinforcement in
*		slab.
4 th	1 st	Beam & column, lapping, anchorage
	2 nd	Effective span for beam & slab.
	3 rd	3.0Analysis and design of singly reinforced sections (LSM)
		3.1 Limit state of collapse (flexure), Assumptions, Stress-Strain relationship for
	-th	concrete and steel, neutral axis.
	4 th	Stress block diagram and strain diagram for singly reinforced section.
46	5 th	3.2 Concept of under- reinforced, over-reinforced and limiting section
5 th	1 st	Neutral axis co-efficient,
	2 nd	Limiting value of moment of resistance and limiting percentage of steel required for
	3 rd	limiting singly R.C. section. Numerical problems on determining design constants
	4 th	Numerical problems on determining design constants
	5 th	
6 th	1 st	Numerical problems on determining design constants Moment of resistance and area of steel for rectangular sections.
0	2 nd	
	3 rd	Numerical problems on Moment of Resistance.
	3	4.1 Analysis and design of doubly reinforced section (LSM)4.1 General features, necessity of providing doubly reinforced section, reinforcement

	4 th	4.2Analysis of doubly reinforced section, strain diagram, stress diagram, depth of neutral axis
	5 th	More and af registering of the rectangular section.
7 th	1 st	4.3Numerical problems on finding moment of resistance and design of beam sections.
	2 nd	Numerical problems
	3 rd	Numerical problems
	4 th	5.1 Shear, Bond and Development Length (LSM) 5.2 Nominal shear stress in R.C. section, design shear strength of concrete, maximum
	5 th	Design of shear reinforcement, minimum shear reinforcement, forms of shear
8 th	1 st	5.3 Bond and types of bond, bond stress, check for bond stress, development length in
	2 nd	Anchorage value for hooks 90° bend and 45° bend standards lapping of bars check for
	3 rd	5.3Numerical problems on deciding whether shear reinforcement are required of not
	4 th	Minimum shear reinforcement in beams; Determination of Development length required for tension reinforcement of cantilevers beam and slab, check fo development length.
	5 th	(1) Design of T Room (ISM)
		6.2 General features, advantages, effective width of flange as per 15. 450-2000 cod
9 th	1 st	6.2Analysis of singly reinforced T-Beam, strain diagram & stress diagram, depth of
	2 nd	Moment of resistance of T-beam section with neutral axis lying within the flange.
	3 rd	6.3Design of T-beam for moment and shear for neutral axis within or up to flange bottom
	4 th	6.4Simple numerical problems on deciding effective flange width.
	5 th	Problems on finding moment of resistance of T-beam section when N.A. lies within our up to the bottom of flange
10 th	1 st	Simple numerical problems
10	2 nd	Simple numerical problems
	3 rd	7.1 Design of Slab and Stair case (LSM)
	3	7.1 Design of simply supported one-way slabs for flexure
	4 th	Check for deflection control and shear.
	5 th	7.2Design of one-way cantilever slabs for flexure
a a th	1 st	Check for deflection control and check for development length and shear.
11 th	2 nd	Design of cantilevers chajjas for flexure
	3 rd	Check for deflection control and check for development length and shear.
		Simple numerical problems on design of one-way simply supported slabs
	4 th	Simple numerical problems on design of cantilever slab
th	5 th	7.3Design of two-way simply supported slabs for flexure with corner free to lift
12 th	1 st	Simple numerical problems on design of two-way simply supported slab
	2 nd	51mple numerical problems on design of two-way simply supported side
	3 rd	7.4Design of dog-legged staircase
	4 th	Simple numerical problems on dog-legged staircase
	5 th	Design of cantilever staircase.
13 th	1 st	Simple numerical problems on cantilever staircase
	2 nd	8.0Design of Axially loaded columns and Footings (LSM) 8.1Assumptions in limit state of collapse- compression.

		8.2Definition and classification of columns
	3 rd	Length of column. Specification for minimum reinforcement; cover, maximum reinforcement
	4 th	Number of bars in rectangular, square and circular sections, diameter and spacing of lateral ties.
	5 th	8.3Analysis and design of axially loaded short column with lateral ties only
14 th	1 st	Analysis and design of axially loaded square column with lateral ties only
	2 nd	check for short column and check for minimum eccentricity
	3 rd	Analysis and design of axially loaded rectangular columns with lateral ties only
	4 th	Analysis and design of axially loaded circular with lateral ties only
	5 th	8.4Types of footing
15 th	1 st	Design of isolated square column footing for flexure and shear
	2 nd	Design of Strip footing for walls.
	3 rd	8.5Simple numerical problems on axially loaded short columns
	4 th	Simple numerical problems on isolated footings.
	5 th	Simple numerical problems on wall footings.
16 th	1 st	
	2 nd	DOUBT CLEARING CLASS AND REVISION & PREVIOUS FIVE YEARS QUESTION
	3 rd	ANSWER DISCUSSION
	4 th	
	5 th	

04/05/5K

Signature of Lecturer

Signature of H.O.D